วันอาทิตย์ที่ 8 กันยายน พ.ศ. 2562

ธาตุกัมมันตรังสี

2.6 ธาตุกัมมันตรังสี
     ธาตุอีกกลุ่มหนึ่งในตารางธาตุซึ่งมีสมบัติแตกต่างจากธาตุที่เคยศึกษามาแล้วคือ สามารถแผ่รังสี แล้วกลายเป็นอะตอมของธาตุใหม่ได้นักเรียนคิดว่าการเปลี่ยนแปลงเหล่านี้เกิดขึ้นได้อย่างไร
     ในปีพ.ศ. 2439 อองตวน อองรีแบ็กเกอเรล (Antoine Henri Becquerel) นักวิทยาศาสตร์ ชาวฝรั่งเศสพบว่า เมื่อเก็บแผ่นฟิล์มถ่ายรูปที่หุ้มด้วยกระดาษสีดำ ไว้กับสารประกอบของยูเรเนียม แผ่น ฟิล์มจะมีลักษณะเหมือนถูกแสง และเมื่อทำ การทดลองกับสารประกอบของยูเรเนียมชนิดอื่น ๆ ก็ได้ ผลเช่นเดียวกัน จึงสรุปว่าน่าจะมีรังสีแผ่ออกมาจากธาตุยูเรเนียม
     ต่อมาปีแอร์กูรีและมารีกูรี(Pierre Curie และ Marie Curie) ได้ค้นพบว่า ธาตุพอโลเนียม เรเดียม และทอเรียม ก็สามารถแผ่รังสีได้เช่นเดียวกัน ปรากฏการณ์ที่ธาตุแผ่รังสีได้เองอย่างต่อเนื่อง เรียกว่า กัมมันตภาพรังสี (radioactivity) ซึ่งเป็นการเปลี่ยนแปลงภายในนิวเคลียสของไอโซโทปที่ ไม่เสถียร และไอโซโทปของธาตุที่สามารถแผ่รังสีได้เองอย่างต่อเนื่องเรียกว่าไอโซโทปกัมมันตรังสี (radioactive isotope) หรือสารกัมมันตรังสี(radioactive substance) เช่น carbon-14 (C-14) สำ หรับธาตุที่ทุกไอโซโทปเป็นไอโซโทปกัมมันตรังสีจะเรียกธาตุที่มีสมบัติเช่นนี้ว่า ธาตุกัมมันตรังสี (radioactive element) ธาตุกัมมันตรังสีส่วนใหญ่มีเลขอะตอมสูงกว่า 83 เช่น U-238 U-235 Th-232 Rn-222 ในธรรมชาติพบธาตุกัมมันตรังสีหลายชนิด นอกจากนี้นักวิทยาศาสตร์ยังสังเคราะห์ธาตุ กัมมันตรังสีขึ้นเพื่อใช้ประโยชน์ในด้านต่าง ๆ
     2.6.1 การเกิดกัมมันตภาพรังสี
     กัมมันตภาพรังสีเป็นปรากฏการณ์ที่เกิดกับไอโซโทปกัมมันตรังสีเพราะนิวเคลียสมีพลังงาน สูงมากและไม่เสถียร จึงปล่อยพลังงานออกมาในรูปของอนุภาคหรือรังสี จากการศึกษาของ นักวิทยาศาสตร์แสดงให้เห็นว่า รังสีที่แผ่ออกมาจากไอโซโทปกัมมันตรังสีอาจเป็นรังสีแอลฟา (alpha ray) รังสีบีตา (beta ray) หรือแกมมา (gamma ray)


   2.6.2 การสลายตัวของไอโซโทปกัมมันตรังสี
     จากการศึกษาไอโซโทปของธาตุจำ นวนมากทำ ให้ได้ข้อสังเกตว่า ไอโซโทปของนิวเคลียสที่มี อัตราส่วนระหว่างจำ นวนนิวตรอนต่อจำ นวนโปรตอนไม่เหมาะสมคือนิวเคลียสที่มีจำ นวนนิวตรอน แตกต่างจากจำ นวนโปรตอนมากเกินไปจะไม่เสถียร จึงเกิดการเปลี่ยนแปลงภายในนิวเคลียสโดย การแผ่รังสี(radiation) ออกมาแล้วเกิดเป็นนิวเคลียสของธาตุใหม่ที่เสถียรกว่า ดังตัวอย่างต่อไปนี้
     การแผ่รังสีแอลฟา ส่วนใหญ่เกิดกับนิวเคลียสที่มีเลขอะตอมสูงกว่า 83 และมีจำ นวนนิวตรอน ต่อโปรตอนในสัดส่วนที่ไม่เหมาะสม เมื่อปล่อยรังสีแอลฟาออกมาจะกลายเป็นนิวเคลียสของธาตุใหม่ที่ เสถียรซึ่งมีเลขอะตอมลดลง 2 และเลขมวลลดลง 4 

     การแผ่รังสีบีตา เกิดกับนิวเคลียสที่มีจำ นวนนิวตรอนมากกว่าโปรตอนมาก นิวตรอนในนิวเคลียส จะเปลี่ยนไปเป็นโปรตอนและอิเล็กตรอน ซึ่งอิเล็กตรอนจะถูกปลดปล่อยออกจากนิวเคลียสในรูปของ รังสีบีตาและนิวเคลียสใหม่จะมีเลขอะตอมเพิ่มขึ้น 1 โดยที่เลขมวลยังคงเดิม

     การแผ่รังสีแกมมา เกิดกับไอโซโทปกัมมันตรังสีที่มีพลังงานสูงมาก หรือไอโซโทปที่สลายตัวให้ รังสีแอลฟาหรือบีตา แต่นิวเคลียสที่เกิดใหม่ยังไม่เสถียรเพราะมีพลังงานสูงจึงเกิดการเปลี่ยนแปลง ในนิวเคลียสเพื่อให้มีพลังงานต่ำ ลง โดยปล่อยพลังงานส่วนเกินออกมาเป็นรังสีแกมมา

แถบที่แรเงาแทนแถบเสถียรภาพ (belt of stability) จุดสีดำ แทนไอโซโทปของ ธาตุที่เสถียร ซึ่งจากรูปจะเห็นว่าธาตุที่มีจำ นวนโปรตอน (เลขอะตอม) มากกว่า 83 ไม่มีไอโซโทปที่ เสถียร ไอโซโทปที่ไม่เสถียรเหล่านี้มีแนวโน้มที่จะปล่อยรังสีแอลฟาเพื่อเกิดเป็นไอโซโทปใหม่ที่มี จำ นวนโปรตอนและนิวตรอนลดลง สำ หรับไอโซโทปที่มีสัดส่วนของนิวตรอนต่อโปรตอนมากเกินไป (แถบสีเขียว) มีแนวโน้มแผ่รังสีบีตาเพราะเมื่อปล่อยรังสีบีตาออกมาจะเกิดเป็นไอโซโทปใหม่ที่มี จำ นวนโปรตอนเพิ่มขึ้นแต่จำ นวนจำ นวนนิวตรอนลดลง (เลขมวลเท่าเดิม) ในขณะที่ไอโซโทปที่มี สัดส่วนของนิวตรอนต่อโปรตอนน้อยเกินไป (แถบสีเหลือง) จะมีแนวโน้มแผ่รังสีโพซิตรอน ซึ่งจะ ทำ ให้ไอโซโทปที่เกิดขึ้นมีจำ นวนโปรตอนลดลงแต่นิวตรอนเพิ่มขึ้น (เลขมวลเท่าเดิม)
    นิวเคลียสของไอโซโทปกัมมันตรังสีสามารถสลายตัวและแผ่รังสีได้ตลอดเวลาโดยไม่ขึ้นกับ อุณหภู
รือความดัน การสลายตัวและแผ่รังสีของไอโซโทปกัมมันตรังสีจะเป็นสัดส่วนโดยตรงกับ จำ นวนอนุภาคในนิวเคลียสกัมมันตรังสีนั้น 
 2.6.3 อันตรายจากไอโซโทปกัมมันตรังสี
     กิจวัตรต่าง ๆ ในชีวิตประจำ วันทั้งการรับประทานอาหาร การดื่มน้ำ การหายใจ ล้วนมีโอกาส ที่มนุษย์จะได้รับรังสีจากไอโซโทปกัมมันตรังสีเช่น K-40 C-14 Ra-226 เข้าสู่ร่างกาย นอกจากนี้ ยังได้รับรังสีคอสมิก (cosmic ray) ซึ่งส่วนใหญ่มาจากอวกาศ รังสีต่าง ๆ เหล่านี้มีแหล่งกำ เนิดจาก ธรรมชาตินอกจากนี้บางคนยังได้รับรังสีที่มนุษย์สร้างขึ้นมา เช่น รังสีจากเครื่องเอกซเรย์รังสีจาก โรงไฟฟ้านิวเคลียร์
  แม้มนุษย์จะได้รับรังสีจากกิจวัตรประจำ วัน แต่การได้รับรังสีจากธรรมชาติหรือจากที่มนุษย์ สร้างขึ้นในปริมาณเพียงเล็กน้อย โดยน้อยกว่า 100 มิลลิซีเวิร์ตพบว่า เซลล์เนื้อเยื่อสามารถฟื้นตัวได้ แต่การได้รับรังสีมากกว่า 100 มิลลิซีเวิร์ต ทำ ให้ เกิดความเสี่ยงต่อสุขภาพ เช่น คลื่นไส้ อาเจียน ปวดศีรษะ เป็นมะเร็ง โรคทางพันธุกรรม ต้อแก้วตา การได้รับรังสีปริมาณมากทั่วร่างกายในเวลาสั้น ๆ สามารถทำ ให้เสียชีวิตได้
     สำหรับหน่วยงานที่ทำ งานเกี่ยวกับรังสีจะต้องแสดงสัญลักษณ์รังสี(radiation symbol) ลงบน ฉลากของภาชนะหรือเครื่องมือรวมทั้งบริเวณใกล้เคียง เพื่อให้ผู้พบเห็นได้ระมัดระวัง สัญลักษณ์รังสี ใช้เป็นมาตรฐานจะเป็นรูปใบพัด 3 แฉก มีสีม่วงอ่อน ม่วงเข้ม หรือสีดำ บนพื้นสีเหลือง
 2.6.4 ครึ่งชีวิตของไอโซโทปกัมมันตรังสี
     ไอโซโทปกัมมันตรังสีจะสลายตัวให้รังสีชนิดใดชนิดหนึ่งออกมาได้เองตลอดเวลา ไอโซโทป กัมมันตรังสีแต่ละชนิดจะสลายตัวได้เร็วหรือช้าแตกต่างกัน อัตราการสลายตัวของไอโซโทปกัมมันตรังสี จะบอกเป็น ครึ่งชีวิต (half life) ใช้สัญลักษณ์t₁/₂ โดยหมายถึง ระยะเวลาที่นิวเคลียสของไอโซโทป กัมมันตรังสีสลายตัวจนเหลือครึ่งหนึ่งของปริมาณเดิม ไอโซโทปกัมมันตรังสีของธาตุชนิดหนึ่ง ๆ จะมี ครึ่งชีวิตคงเดิมไม่ว่าจะอยู่ในรูปของธาตุหรือเกิดเป็นสารประกอบ เช่น Na-24 มีครึ่งชีวิต 15 ชั่วโมง หมายความว่าถ้าเริ่มต้นมีNa-24 ปริมาณ 10 กรัม นิวเคลียสนี้จะสลายตัวให้รังสีออกมาจน กระทั่งเวลาผ่านไปครบ 15 ชั่วโมง จะมีNa-24 เหลืออยู่ 5 กรัม และเมื่อเวลาผ่านไปอีก 15 ชั่วโมง จะมีNa-24 เหลืออยู่ 2.5 กรัม นั่นคือเวลาผ่านไปทุก ๆ 15 ชั่วโมง Na-24 จะสลายตัวไปเหลือเพียง ครึ่งหนึ่งของปริมาณเดิม
                                 

โดยสูตรการคำนวณครึ่งชีวิต มีดังนี้
Nเหลือ = Nเริ่มต้น/2n
T = nt1/2
โดย Nเหลือ แทนปริมาณกัมตรังสีที่เหลือ
T แทนจำนวนเวลาที่ธาตุสลายตัว
Nเริ่มต้น แทนปริมาณกับมมันตรังสีเริ่มต้น
n แทนจำนวนครั้งในการสลายตัวของครึ่งชีวิต
2.6.5 ปฏิกิริยานิวเคลียร์
ปฏิกิริยานิวเคลียร์เป็นการเปลี่ยนแปลงในนิวเคลียสของไอโซโทปกัมมันตรังสีเกิดจากการแตกตัวของนิวเคลียสของอะตอมที่มีขนาดใหญ่หรือเกิดจากการรวมตัวของนิวเคลียสของอะตอมที่มีขนาดเล็กแล้วได้ไอโซโทปใหม่หรือนิวเคลียสของธาตุใหม่รวมทั้งมีพลังงานเกี่ยวข้องกับปฏิกิริยาเป็นจำนวนมหาศาลซึ่งสามารถนำมาใช้ประโยชน์ได้
ในปีพศ. 2482 นักวิทยาศาสตร์ได้ค้นพบว่าเมื่อยิงอนุภาคนิวตรอนไปยังนิวเคลียส U-235 นิวเคลียสจะแตกออกเป็นนิวเคลียสของธาตุที่เบากว่า กระบวนการที่นิวเคลียสของไอโซโทปของธาตุบางชนิดแตกออกเป็นไอโซโทปของธาตุที่เบากว่าดังตัวอย่างที่กล่าวมาแล้วเรียกว่า ฟิชชัน ไอโซโทปของธาตุอื่นที่สามารถเกิดฟิชชันได้ เช่น U-238 การเกิดฟิชชัน แต่ละครั้งจะคายพลังงานออกมาเป็นจำนวนมากและได้ไอโซโทปกัมมันตรังสีหลายชนิดซึ่งถือว่าได้เป็นวิธีผลิตไอโซโทปกัมมันตรังสีที่สำคัญนอกจากนี้ฟิสชั่นยังได้นิวตรอนเกิดขึ้นอีกด้วย ถ้านิวตรอนที่เกิดขึ้นใหม่นี้ชนกับนิวเคลียสอื่นจะเกิดเป็นฟิชชันต่อเนื่องไปเรื่อยๆเรียกปฏิกิริยานี้ว่า ปฏิกิริยาลูกโซ่
                      

ฟิชชันที่เกิดภายในภาวะที่เหมาะสม จะได้จำนวนนิวตรอนเพิ่มขึ้นอย่างรวดเร็วทำให้ฟิชชัน ดำเนินไปอย่างรวดเร็วและปล่อยพลังงานออกมาเป็นจำนวนมหาศาลถ้าไม่สามารถควบคุมปฏิกิริยาได้อาจเกิดการระเบิดรุนแรงหลักการเกิดปฏิกิริยาลูกโซ่ได้นำมาใช้ในการทำระเบิดปรมาณูการควบคุมฟิชชันทำได้หลายวิธี เช่นควบคุมมวลของสารตั้งต้นให้น้อยลงเพื่อให้จำนวนนิวตรอนที่เกิดมีไม่เพียงพอที่จะทำให้เกิดปฏิกิริยาลูกโซ่ได้ ในกรณีที่นิวเคลียสของธาตุเบา 2 ชนิดหลอมรวมกันเกิดเป็นนิวเคลียสใหม่ที่มีมวลสูงกว่า เดิมและให้พลังงานปริมาณมาก ปฏิกิริยานี้เรียกว่า ฟิวชัน ปฏิกิริยาทั้งสองนี้เป็นปฏิกิริยากับที่เกิดบนดวงอาทิตย์การเกิดฟิวชันจะต้องใช้พลังงานเริ่มต้นสูงมากและเอาชนะแรงผลักระหว่างนิวเคลียสที่จะเข้าร่วมกันซึ่งประมาณว่าจะต้องมีอุณหภูมิสูงถึงหลายล้านองศาเซลเซียส พลังงานมหาศาลนี้อ่านได้จากฟิชชันซึ่งเปรียบเสมือนฉนวนที่ทำให้เกิดฟิวชั้น ถ้าพลังงานที่ปล่อยออกมามาจากฟิวชันเกิดขึ้นอย่างรวดเร็วจะเกิดการระเบิดอย่างรุนแรงแต่ถ้าควบคุมให้มีการปล่อยพลังงานออกมาอย่างช้าๆและต่อเนื่องจะให้พลังงานมหาศาลที่เป็นประโยชน์ต่อมนุษย์ฟิวชันมีข้อได้เปรียบมากกว่าฟิชชันหลายประการกล่าวคือคายพลังงานออกมาม่าสารตั้งต้นของฟิวชันหาได้ง่ายและมีปริมาณมากนอกจากนี้ผลิตภัณฑ์ที่เกิดจากฟิวชันเป็นธาตุกัมมันตรังสีที่มีครึ่งชีวิตสั้นและมีอันตรายน้อยกว่า ผลิตภัณฑ์จากการเกิดฟิชชัน แม้จะมีการค้นพบกระบวนการฟิวชั่นมานานแต่ การนำมาใช้อย่างเป็นรูปธรรม เป็นไปได้ยากเพราะการเกิดฟิวชั้นต้องใช้อุณหภูมิสูงมากซึ่งที่สภาวะนี้แสนจะเปลี่ยนเป็นรูป Plasma ซึ่งไม่เสถียรดังนั้นการควบคุมกระบวนการฟิวชันให้เกิดอย่างต่อเนื่องเป็นไปได้ยากมาก
2.6.6 เทคโนโลยีที่เกี่ยวข้องกับการใช้สารกัมมันตรังสี
สารกัมมันตรังสีแต่ละชนิดมีครึ่งชีวิตไม่เท่ากันและแผ่รังสีได้แตกต่างกันการนำสารกัมมันตรังสีมาใช้ประโยชน์จึงแตกต่างกัน
ด้านธรณีวิทยา ใช้ C-14 ซึ่งมีครึ่งชีวิต 5730 ปีหาอายุของวัตถุโบราณที่มีคาร์บอนเป็นองค์ประกอบ เช่นไม้กระดูกการหาอายุโบราณโดยการวัดปริมาณของ C-14 อธิบายได้ว่าในบรรยากาศมี C-14 ซึ่งเกิดจากไนโตรเจนรวมตัวกับนิวตรอนจากรังสีคอสมิก
ด้านการแพทย์ ใช้เพื่อศึกษาความผิดปกติของอวัยวะต่างๆในร่างกายโดยให้คนไข้รับประทานอาหารหรือยาที่มีไอโซโทปกัมมันตรังสีจำนวนเล็กน้อยจากนั้นใช้เครื่องมือตรวจสอบรังสีเพื่อติดตามดูผลการดูดซึมของไอโซโทปกัมมันตรังสีของระบบอวัยวะต่างๆ
ด้านเกษตรกรรม ใช้ไอโซโทปกัมมันตรังสีในการติดตามระยะเวลาของการหมุนเวียนแร่ธาตุในพืชโดยเริ่มจากการดูดซึมที่รากจนถึงการคายออกที่ใบ หรือจำนวนแร่ธาตุที่พืชสะสมไว้ในใบ
ด้านอุตสาหกรรม ใช้ไอโซโทปกัมมันตรังสีกับงานหลายอย่างเช่นใช้ตรวจหารอยตำหนิในโลหะหรือรอยรั่วของท่อขนส่งของเหลวผสมไอโซโทปกัมมันตรังสีกับของเหลวที่จะขนส่งไปตามท่อและติดตามการแผ่รังสีด้วยเครื่องไกเกอร์ มึลเลอร์ เคาน์เตอร์ บริเวณใดที่มี สัญญาณจำนวนนับมากผิดปกติแสดงว่าบริเวณนั้นมีการรั่วไหลเกิดขึ้น

ไม่มีความคิดเห็น:

แสดงความคิดเห็น

ข้อสอบ เรื่อง พันธะเคมี

1. จำนวนพันธะโคเวเลนต์ในโมเลกุล CH 4  , SiCl 4  , NaCl , NH 3   เป็นกี่พันธะมีค่าเรียงตามลำดับ   คือข้อใด     ก. 4 , 4 , 0 , 3      ข. ...